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Department of Chemical Engineering and Chemical Teshnology, 
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Preface 

Readers of this Journal do not, in my experience, have a uniform view of what properly 
constitutes the discipline of Fluid Mechanics; nor would they agree on what the main 
outstanding problems in the subject are. Many, particularly among those who do not 
contribute to the Journal, believe - unfortunately - that it has become a branch of 
applied analysis on the theoretical side, and is dominated by hot-wire and laser 
anemometry on the experimental side. As an ex-editor, I must hasten to add that this 
has not been the view of the editors, and that, if such an impression is created by the 
spectrum of papers published in the Journal, such an imbalance largely reflects the 
nature of the papers submitted. 

My thesis here is that  it would be unwise to  take too narrow a view of fluid mechanics, 
and that the directions in which useful progress might most easily, and most probably 
will, be made, lie along paths unfamiliar to  most workers in the subject. The implica- 
tion of this thesis is that  the teaching of fluid mechanics in many engineering, applied 
mathematics and mechanics departments should be reassessed: the syllabuses chosen 
and the approach used should be examined critically in the light of new developments 
in the subject and of those situations, involving fluid flow, that most perplex those 
working primarily in other fields. 

The teaching of formal fluid mechanics is now dominated by the continuum 
mechanics of a homogeneous viscous fluid obeying the celebrated Navier-Stokes 
equation and the continuity condition. Their applicability to  a wide range of impor- 
tant gas and liquid flows is well established; analytical or numerical solutions based 
on them have been very successful in providing predictions for flow and pressure 
fields which can be verified experimentally. The attractions of this approach are 
obvious: (a )  a minimum of basic assumptions and variables of interest; ( b )  a clear 
connection with physical reality on a visually obvious and familiar scale; ( c )  a clear 
and unambiguous mathematical formulation; (d ) a graded set of formally rigorous 
mathematical solutions to idealized problems incorporating interesting nonlinear 
effects; ( e )  a well-documented record of past successes in anticipating (and not merely 
explaining after the event) important practical observations. 

One well-known weakness of this approach lies in the field of turbulent flow. Despite 
remarkable successes in predicting instability of laminar flow solutions and in in- 
vestigating regimes where multiple solutions exist, formal exact theory cannot treat 
fully the turbulent flow which characterizes many situations of interest in engineering. 
Such treatments as are now used involve a series of additional empirical or pheno- 
menological assumptions, which lead in most cases to complex numerical solution of 
engineering or geophysical flow problems. It is noticeable how few of the contributors 
to this volume have chosen to write about turbulence, despite early endeavours in that 
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field by many of them. It is no exaggeration to  say that a rational theory of 
turbulence remains the outstanding challenge in fluid mechanics. 

Strivings towards a formal theory of turbulence based directly on the Navier- 
Stokes equation did, however, lead to  incorporation into classical fluid mechanics of 
many important statistical ideas, which are shared with statistical mechanics. For 
example, distinctions between ensemble, time and space averages, though no longer 
widely discussed in fluid mechanics, remain lively matters of interest in the theory of 
liquids, and have relevance in current environmental problems of effluent or pollutant 
dispersion. The subtle role of ‘internal’ length and velocity scales, and the spectral 
(eddy) approach, are further concepts that  extended traditional approaches to  fluid 
mechanics, and are of importance in rheologically complex fluids. It is a pity, there- 
fore, that  formal teaching of fluid mechanics does not emphasize these aspects more 
and so direct students towards the underlying ideas that those who have worked 
on these problems regard as essential. 

Concentration on laminar flow solutions for homogeneous Newtonian fluids has 
other disadvantages. It obscures the central role implicitly or explicitly played in a 
fluid-mechanical theory by the constitutive equation (rheological equation of state) 
relating the local stress tensor to the history of deformation (as well as certain other 
variables). It tends to  separate the mechanics of flow from the thermodynamics, 
instead of stressing the essential unity and breadth of a full continuum theory. This 
separation of approach is abetted by many teachers of thermodynamics, who con- 
centrate on equilibrium states, and regard transport phenomena as disjoint from their 
field of interest. 

The following sections are written from the point of view of a chemical engineer, for 
whom fluid mechanics plays a less central role than for an aeronautical or civil engineer, 
though not, in my view, a less important one. It is the connections between fluid 
motions and other aspects of engineering that are of most importance in applying 
formal theories and basic results on fluid mechanics. 

Fluid mechanics in chemical engineering 

Fluid mechanics is taught in all chemical engineering courses. It presents more diffi- 
culty in my experience than any other subject in the curriculum (Pearson 1980). It is 
widely regarded as an essential element in engineering practice, although I have come 
across relatively few practising chemical engineers who make creative use of fluid 
mechanics (and, for many of them, this ends with the Navier-Stokes equation) in 
solving engineering problems. I n  most cases, they make cautious use of the many 
engineering correlations that have been enshrined in the most widely accepted text- 
books, such as for friction factor in pipe flow, or terminal fall velocity of freely falling 
particles; at worst they disregard all fluid-mechanical effects as such, incorporating 
them implicitly into heat- or mass-transfer correlations. Because of this, they fail to 
gain insight into many processes of interest and importance, and fail to anticipate or 
solve problems that arise in their processes. They are not to  be blamed for this, for 
their problems are complex and the issues most important to them are rarely con- 
sidered by experts in fluid mechanics in a context familiar to them. 

Mixing in liquids - blending, agitation, dissolution, emulsification, or just plain 
stirring - is a typical such issue. The process is inseparable from the mechanics of the 



Wider horizons for  flzLid mechanics 231 

flow employed; in many cases, the rheological properties of the fluid (relevant in the 
momentum equation) are dependent on the local proportions and state of the various 
constituents of the mixture, i.e. on the degree and uniformity of the mixing. So there 
can be strong coupling between the mixing flow and the material being mixed. This is 
well known in a general sense to  engineers, but there is little formal theory for them 
to refer to. Danckwerts (1952) provided a lead by proposing a statistical description 
of mixedness based on ideas then current in turbulence theory, distinguishing between 
scale and intensity, while Batchelor (1959) and Batchelor, Howells & Townsend 
(1959) investigated the passive mixing effect of turbulent motions. There, with 
a few honourable exceptions largely in the field of combustion (see reviews of Hill 1976 
and Libby & Williams 1976), the subject has rested, or so it would appear from the 
chapters on mixing in most engineering texts. Most attention is still paid to power 
factors and algebraic scaling laws, it being implied that industrial needs can be met 
by selection from a small range of agitators - paddle, turbine, helix, propellor - and 
baffled vessels, based on elementary considerations and past experience. I n  practice, 
however, a great many other devices are used to  produce mixtures, but .these are 
usually described by special terms - atomizer, homogenizer, plasticizer, mill, carbu- 
rettor - each with their own folklore, and are not recognized primarily as mixers. 
Seldom is a student presented with much overall insight into the differing contribu- 
tions made by different flow fields - imposed laminar, imposed turbulent and naturally 
unstable - or into the objectives of the mixing processes, which may include heat 
transfer and aggregation or disaggregation of a dispersed phase. 

A difficulty I have met when co-operating with many practising engineers is in 
persuading them to go far enough back into the processing problem in question; all 
too often they assume, without discussion, that they have correctly formulated its 
fluid-mechanical element ; and inexperienced workers anxious to display their analy- 
tical or experimental skills in fluid mechanics happily embark on extensive investiga- 
tions, convinced that their work is relevant without sufficient appreciation of the 
process as a whole. The proper course,? less often followed with care, is (a)  to define as 
unambiguously as possible, in each case, those variables that are important in the 
product (and this often involves a still different group of people), and to state the values 
or range of values that they should have in an acceptable product; (b )  to define those 
input and operating variables that characterize the process and which may be adjusted 
to achieve the desired product; ( c )  to provide a physical and, where possible, a mathe- 
matical model relating input to output variables. 

It is a t  this stage that the fluid mechanics governing the process becomes important: 
any model will involvea knowledge of the velocity, temperature, and - in some cases - 
stress, fields characterizing the process. Skill is, however, required in deciding which 
parts and which aspects of the flow field are important in the coupled set of governing 
equations, and the level of accuracy required in describing the relevant portions of the 
flow field; in recognizing whether steady-state or transient effects are the primary 
cause of difficulty. For example, many difficulties only arise a t  the entry or exit 

t It is not that this is not recognized by many teachers of engineering fluid mechanics, and 
indeed open-ended problems set are often selected to illustrate and develop this approach. 
Unfortunately the view that students should have some knowledge of a vast range of scientific 
theory and should be able to reproduce a lot of standard techniques allows little time in most 
curricula, which are based on clearly identified subject headings, to achieve the necessary 
depth or breadth of approarli in tackling relatively. complex industrial processes. 
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FIGURE 1. Diagram of continuum flow PVC reactor that is kept full of liquid. 

regions: elaborate bulk analyses that idealize these regions by prescribed inlet and 
exit boundary conditions will never provide significant understanding. 

Unfortunately, examples of the successful application of fluid mechanics to engineer- 
ing problems do not conveniently lend themselves to publication as original papers. 
Such work as does appear in print is often suggested by the original problem, but is 
needlessly elaborate for practical purposes; indeed, one can go further and argue that 
its nature and depth is more determined by national arrangements for supporting 
research students than any intrinsic need for, or significance of, the results published 
On countless occasions, as a referee, I have read introductory paragraphs which 
expound generally on the importance of work on, say, suspension mechanics to various 
industries (coal, paper, oil exploration, printing, paint), without any particular 
situation or problem being mentioned. What follows then makes little or no contribu- 
tion to either the fundamentals of fluid mechanics or its application to a live problem 
involving other features. 

An illustrative example (that is unlikely to reach the literature in any other context), 
of how a relatively broad knowledge of fluid mechanics can be usefully applied to 
explain an apparently paradoxical observation in reactor engineering, is appropriate. 
It concerns the continuous polymerization of a concentrated emulsion of vinyl chloride 
in an aqueous solution to yield a fine suspension of PVC particles. A very simple 
schematic diagram of the reactor vessel claimed in a German patent to achieve the 
desired result is shown in figure 1 .  The interesting feature is that only a small stirrer 
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is shown a t  the top (inlet) of the cylindrical vessel of large (many metres) diameter 
and even greater height. The polymerization process requires 

( a )  that the time spent in the reactor by each element of monomer/polymer depart 
as little as possible from a known mean, i.e. the reactor should behave as a 'plug-flow' 
reactor with a sharp residence-time distribution; 

( 6 )  that  the temperature throughout the reactor be kept as close as possible to a 
fixed operating temperature, i.e. within a few degrees of some value between 50 and 
75 " C ;  

( c )  that  there be no segregation of the phases. 
Important features of the process are: 

( d )  that  a large amount of heat is released by the polymerization reaction, and so 
strong cooling has to be applied; 

( e )  that  polymer is significantly denser than monomer, and so the mean density of 
the emulsion/suspension in the reactor increases from top to  bottom if plug flow is 
achieved; 

(f) that  a stable emulsion is achieved in the input by surface-active agents and that 
polymer accumulates around sites initiated in very small micelles of vinyl chloride, 
i.e. polymer particles form separately from the main droplets of vinyl chloride, and 
the monomer diffuses through the aqueous phase from droplet to growing particle. 

The arrangement, if successful, presents a paradox t o  an engineer asked to assess 
the merit, or even the feasibility, of the design. How can plug flow be achieved, i.e. 
flow characterized by the absence of vertical mixing, together with efficient radial heat 
transfer? Molecular transport of heat can be discounted as relevant except in very 
narrow boundary layers (of order 1 mm thick) a t  the surface of the reactor, while 
any imposed radial stirring is ruled out on mechanical grounds by the size of the 
reactor. Indeed the diagram shown includes but a single small stirrer a t  the top used 
to  ensure an initially satisfactory emulsion. Those familiar with natural thermal 
convection will recognize a t  once the possibility of large convection cells arising as 
radial temperature gradients tend to  develop. However, a convective pattern such 
as the one shown in figure 2 ( a )  would tend to make the reactor into a single well- 
stirred one with an exponential form of residence time distribution and therefore 
unacceptable according to (a)  above. At the same time, the mean density gradients 
due to polymerization, mentioned in ( e )  above, will tend to  stabilize the system against 
vertical motions. Those familiar with geophysical applications of fluid mechanics will 
readily recognize that the multicellular structure shown in figure 2 ( b )  would then be 
the most likely. The paradox is finally resolved by recognizing that the four (or more) 
cells shown could be crudely regarded as fully stirred reactors in series; which reactor 
theory has independently shown to be little different in practice from a true plug-flow 
reactor. 

Note that so far only general ideas relating to flow patterns have been put forward. 
Once a likely flow pattern has been proposed, i.e. as in figure 2 ( b ) ,  crude calculations 
can be carried out to  estimate flow velocities and heat transfer rates. The details of 
even an order-of-magnitude approach go rather beyond traditional textbook treat- 
ments. I n  the case illustrated, it was possible to  show that natural convection could 
account (at a Grashof number of unity) for the necessary heat transfer. There remained 
the question of estimating the number of cells likely to  develop. A systematic search 
among recent Journal of Fluid Mechanics titles discovered several papers which 
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FIGURE 2. Convective patterns driven by density gradients: (a )  unacceptable as would be 
expected with no irreversible material density changes; ( b )  acceptable, due to mixed thermal 
and irreversible material density gradients. 

addressed related situations, in which density gradients were present, and presented 
experimental data. This provided strong support for the multicellular model. 

The engineering analysis briefly described above was carried out in a relatively 
short time t o  test the feasibility of a design, which departed remarkably from tradi- 
tional batch process designs, and which achieved an increase in scale only by an 
apparent disregard of standard scaling laws, particularly as regards agitation for heat 
transfer. Any attempt to  simulate the reactor flow on the basis of a complete numerical 
treatment of the coupled equations would have taken far longer and been too expen- 
sive; direct laboratory-scale experiments would have yielded nothing of relevance in 
the time available. Even if the feasibility study were to  be pursued t o  provide more 
precise quantitative information, it is highly probable that both theoretical and 
experimental work would be based on a multicellular model. The issue that is relevant 
to  my thesis is whether traditional teaching of engineering fluid mechanics would lead 
even relatively gifted engineers t o  carry out such an analysis, or to  know how to 
present information to more specialist workers in fluid mechanics in such a way as to 
lead them to appreciate the critical aspects of the problem. My experience, not just in 
this particular case, but over a wide range of complex problems, is that i t  does not. 

Rheological equations of state 

Industrial processes, particularly those considered by chemical engineers, have pro- 
vided many examples of the flow of fluids that are clearly non-Newtonian. Polymeric 
systems have been the most widely studied class, but dense suspensions of particles or 
drops are equally important and interesting. More general mixtures, reacting systems 
and those showing phase changes further extend the range. The importance of des- 
cribing such materials rheologically has been repeatedly stressed for the last four 
decades and major advances have been made in continuum-mechanical theories. The 
pioneering paper of Oldroyd ( 1  950) deserves separate mention. Different aspects of 
the subject are more than adequately treated in various texts: an exhaustive general 
account is given in Truesdell & No11 (1965); a class of relations relevant for rubber-like 
fluids is given in Lodge (1964), while a more comprehensive treatment for polymeric: 
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liquids is given in Bird, Armstrong & Hassager (1977); a much briefer account is 
given in Astarita & Marrucci (1974). The last three concentrate wholly on the relevant 
constitutive equations for a homogeneous isotropic continuum, while the first deals 
largely with homogeneous materials. Boundary or jump conditions are rarely dis- 
cussed in any detail. 

It is quite clear that all real materials of interest show profound inhomogeneity, and 
considerable structure, when viewed on a small enough scale. It is a basic problem of 
physics to explain observed behaviour in terms of more fundamental physical laws 
applied to  the motion of the structural elements. If the element is taken to be a mole- 
cule (now regarded as the realm of chemistry), then the techniques of classical statisti- 
cal mechanics are employed. However, as Batchelor (1967, p. 53) has written, even for 
very simple molecular fluids, “much less is known about the structure of liquids than 
about that  of gases. No simple model, like that of a perfect gas with dynamically 
independent molecules, is available for the derivation of approximate results for 
liquids. As a consequence, it is not possible to set many of the observed values of 
properties of a liquid within a logical framework or to account for them in terms of 
properties of the individual molecules”. In  particular, the linear (low shear rate) 
viscosity is thus treated as a parameter best evaluated by experiment. The only 
simple molecular theory of liquid viscosity is that provided by Eyring (Eyring 1936) 
and developed with coworkers based on the jumping of molecules over energy barriers 
between equilibrium positions which leads to a non-Newtonian viscosity which 
behaves as (In D ) / D  for large shear rates D,  although it can be regarded as constant for 
observable shear rates. Attempts have been made to  employ more rigorous molecular 
dynamical calculations to the prediction of a rheological equation of state : difficulties, 
that are largely concealed rather than resolved in the Eyring treatment, arise in con- 
nection with the definition of the stress tensor in a non-equilibrium configuration, most 
particularly near interfaces, where similar difficulties arise in the definition of equilib- 
rium thermodynamic functions. I n  practice, of course, simple fluids are well described 
by an easily measured viscosity. 

More progress has been made in the case of some more complex fluids. One class is 
provided by dilute suspensions of solid particles, which are modelled in terms of a 
continuous linear viscous phase and a rigid (or visco-elastic) solid phase with con- 
tinuity of velocity and stress across the interfaces; a very similar class is provided by 
dilute emulsions consisting of a dispersed viscous (or elasticoviscous) liquid in a 
continuous linear viscous phase separated by interfaces exhibiting constant surface 
tension. The size of the particles or droplets is large compared with molecular dimen- 
sions. Here the technique has been to study the exact flow around the particles 
analytically by means of Newtonian fluid mechanics and then to use statistical 
(averaging) arguments (Herczyriski & Pierikowska 1980) to obtain the continuum 
equation of state for the suspension on a scale large compared with the separation dis- 
tance of the particles. Results have been obtained for non-spherical particles, two- 
particle interactions and Brownian motion (rotational diffusion) of particles. Batchelor 
(1976) provides a review of these ideas, and notes that the derivations and the equa- 
tions of state are as exact as any calculations made in traditional fluid mechanics for 
Stokes flow of a Newtonian fluid in a region bounded by solid or deformable surfaces. 
Many of the logical steps employed are analogous to  those used in molecular dynamics 
and statistical mechanics. Instead of Newtonian particle mechanics allied to inter- 
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molecular potentials which are used in molecular dynamics, continuum mechanics is 
used in synthetic rheological theories for suspensions. Unfortunately, the methods 
employed cannot yet be extended rigorously to include dense suspensions, though very 
interesticg proposals have been made (Goddard 1977) that involve lubrication theory 
and a denumerable set of effective point contacts between particles. 

The other major class of complex fluids that has been successfully investigated is 
provided by polymeric fluids, which are conveniently discussed under three categories: 
dilute solutions, concentrated solutions and homogeneous polymer melts. The polymer 
molecules are interesting because they exhibit two widely different length scales: that 
of the monomer unit in the chain which is of molecular dimensions similar to those 
considered in molecular dynamics, and that of the extended chain, which is many 
orders of magnitude larger, though still smalI compared with the fluid-mechanical 
length scale. For entropic reasons, flexible polymer molecules assume a coiled form, 
with a characteristic diameter that is the geometric mean of the monomer and extended 
chain lengths. 

The dilute polymer solution is treated in some ways like a dilute suspension. Because 
of the connectivity requirement along the chain, most parts of the chain must be 
moving relative to the solvent in any sheared flow, the latter being assumed to have 
the local mean fluid velocity (the ‘affine ’ assumption). The mechanical interactions 
between polymer chains and surrounding solvent are then modelled by considering a 
pseudo-chain of beads and springs (or rods); the springs (or rods) move freely in the 
solvent while the beads suffer a Stokes drag force. The model chain is defined by the 
number of beads, the strength of the springs and the drag coefficient of the beads; 
Brownian forces can be included. Such theories have recently been fully described in 
Bird, Hassager, Armstrong & Curtiss (1977, chapters 10-14) who stress the role of 
kinetic theory in obtaining rheological equations of state. These are of the elastic- 
viscous type introduced by Oldroyd (1950). The details are relatively complex, and 
lead to a range of predictions for the stresses in controllable? flow fields. 

A concentrated polymer solution is one in which the polymer molecules overlap and 
interact directly. Models for these are more varied. However, the most common are 
coctinuous network models, in which the key notion is that of a ‘junction’, i.e. a point 
a t  which there is a temporary connection between two chains. Belween junctions the 
chains are modelled by springs, with the same properties as in the bead-spring model. 
If the junctions were permanent, and all interconnected, the material would be a 
swoHen solid rubber. If the concentrated solution is to possess fluidity, the instan- 
taneous network must be capable of breaking and reforming. The simplest account is 
given in Lodge (1964), who adopts the ‘affine’ concept for the movement of junctions; 
the basic model and various extensions are described in Bird, Hassager, Armstrong & 
Curtiss (1977, chapter 15), although several more have since been proposed. 

Molten polymers are the most important class industrially, but they have been less 
carefully investigated in terms of a full rheological equation of state. A recent theory 
of Doi & Edwards (1978) based on a reptating chain-in-tube model has stimulated a 

t Controllable flows are those in which a known flow field can be imposed by the deliberate 
movement of rigid boundaries whatever the rheological properties of the fluid; it is assumed 
that inertial forces are negligible, but controllability also assumes that the flow obtained will 
display the maximum degree of symmetry consistent with the boundary conditions; un- 
fortunately such flows can become unstable, with less symmetric, but often steady, flows then 
taking their place. 
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re-examination of this problem and careful comparison of the rheological equations 
of state provided by various apparently independent theories. In  particular, Curtiss & 
Bird (1980) have shown that a bead-rod model leads to essentially the same equation 
of state as that of Doi & Edwards; furthermore, it is of the same general type as 
those given by temporary network theories. 

A recent text by de Gennes (1979)provides veryconsiderable insight into polymeric 
fluid behaviour generally. I n  particular, the importance of the blob length scale is 
made clear: within a blob, the effect of excluded volume is important and so an 
individual chain interferes with itself; over lengths larger than a blob diameter, a 
chain can be considered a Gaussian (phantom) chain of blobs. The blob thus introduces 
a length scale larger than the monomer and smaller than the diameter of the entire 
chain. Thus the physics of a coiled chain introduces of itself a length that removes some 
of the arbitrariness associated with chains of beads (i.e. their diameter and mean 
separation), with tubes surrounding reptating chains (i.e. tube diameter) and with 
networks (i.e. distance between junctions). 

Batchelor, Bird, Edwards, de Gennes and their many co-workers have done a 
singular service to fluid mechanics, by emphasizing its connections with statistical 
mechanics of the fluid state, and by presenting theories for structured fluids (including 
liquid crystals) in a form which incidentally satisfies the invariance requirements of 
formal continuum theories. They have taken rheology beyond the phenomefiological 
backwater of linear viscoelasticity into which many of its practitioners had retreated. 

Boundary conditions 
Continuum theories admit of jump discontinuities of properties and so solution of the 
field equations of continuum mechanics requires boundary conditions to be specified 
a t  the relevant interfaces. Apart from general agreement on the operational use of the 
concept of surface tension between two (immiscible) bulk liquids, there has been 
relatively little fruitful contact between fluid mechanics and surface physics and 
chemistry. In  general this had led to little difficulty, because the no-slip boundary 
condition a t  solid surfaces together with continuity of stress and velocity a t  free 
surfaces (special account being taken of the normal stress discontinuity associated 
with surface tension acting over a curved surface) have been adequate for most 
problems in fluid mechanics. 

However, there are exceptional cases where difficulties arise, and where a great deal 
of confusion exists in the literature. Thin liquid films, as in foams or on surfaces, can 
exhibit apparently non-Newtonian properties that are not characteristic of the same 
liquid in bulk. Concentrated emulsions containing dissolved polymers or polar 
surface-active agents can similarly display behaviour uncharacteristic of either bulk 
phase or of simpler emulsions of the same concentration. Theoretical analyses of flow 
fields involving sharp corners or moving contact lines (lines a t  which the interface 
between two immiscible fluids meet a solid surface) according to traditional New- 
tonian fluid mechanics often predict singularities in stress; these are in practice 
not observed. 

Molecular dynamical investigations have shown that the simplest plane liquid/ 
vapour or liquid/liquid interfaces are in fact very thin layers of order 5 molecular dia- 
meters thick within which large difference-of-normal stresses arise. This is illustrated 
in figure 3. Within the bulk of fluid A ,  the stress a t  equilibrium TA = - p A  I is 
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FIGURE 3. The Gibbs representation for a fluid/fluid interface. 

isotropic; within the bulk of fluid B,  similarly, TB = - p B  I ;  within the interface region, 
the stress T,,  can be written, on the basis of planar symmetry, as 

where pnn > pt,for immiscible liquids; TAB is a function of n and not t .  Gross equilib- 
rium requires that p, = p B  = p ,  it being assumed that intermolecular forces (both 
long and short range) act effectively only over distances of the order of the layer 
thickness. The surface tension is defined by 

If  we seek to  calculate pnn and ptt, which are continuum quantities, i t  becomes clear 
that  the overlap of the molecular and what is now the continuum scale for the region 
AB leads to difficulties. A halfway-house approach is to neglect the actual motion of 
molecules, replacing their thermal energy everywhere by a uniform isotropic pressure 
.;t-kBT; the equilibrium situation then becomes a static one whose stress field is deter- 
mined by means of a continuous representation for the pairwise intermolecular 
potential field. The real situation involves sharp mean-concentration gradients in the 
inter-facial region, with concomitant thermodynamical driving forces; the equilibrium 
concentration distribution would in thermodynamical terms be determined by the 
requirement of constant chemical potential. However, it would seem that the 
calculation of all thermodynamical variables in such an interfacial region is subject 
t o  the same uncertainties as that  for the stress. Amore tractablesituationis apparently 
provided by the case of almost miscible liquids, i.e. an interfacial region of very low 
excesssurface energy (surface tension), when the interfacial region becomes arbitrarily 
thick in terms of the molecular length scale, though formally still arbitrarily thin on 
the continuum length scale. 
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FIGURE 4. The static contact line. 

The next stage is to consider the case of an equilibrium contact line? as shown in 
figure 4. The continuum representation is to suppose that the plane interface AB 
meets the solid surface at the contact line L, subtending an equilibrium contact angle 
8,; Young's equation states that  a balance of forces in the plane of the solid surface 
provides a relationship between yAB and the two surface excess energies ync and 

~ABcosoc = Y ~ C - Y A C .  

Note that yBC and yAC can be defined in terms of T,, and T A C  just as yAB was defined 
in terms of TAB. If Young's equation is correct, it requires that a normal force/unit 
length yABsinBc act on the solid C at L. No widely accepted explanation (see 
Dussan V. 1979, pp. 377-380) has beengiven as to  whythis forceshould benormal, and 
contact-angle hysteresis after motion of the contact line suggests that in practice 
it will not always be so. Resolution of this matter in terms of a local continuum treat- 
ment for the non-homogeneous (in terms of the concentrations of A, Band C and out- 
of-balance molecular forces) region near L has led to  differing predictions. In  particular, 
no unique means of definition of the interface AB in the neighbourhood of L has been 
accepted. The broken line (i) shown in figure 4 is simply an extrapolation of the Gibbs 
interface into the region where TAB will vary with t as well as n ( t  and n as defined in 
figure 3); there is no reason to believe that the dotted line (ii), for example, might not 
b3 as realistic if a sharp interface were demanded by traditional continuum-mechani- 
cists anxious to  maintain the stark simplicity of field equations plus jump conditions. 

Steady motion of the contact line, which has been observed experimentally, 
presents additional problems for the continuum-mechanical approach. If a planar 
interface A B  is, as before, regarded as meeting the solid surface in a contact line L 
(figure 5) then any change in the contact angle 0;. U ) ,  now regarded as a function of 
the speed U of the solid surface relative to  the contact line, will upset the balance of 
forces shown in figure 4. For two strictly inviscid fluids a t  constant pressure, a force 
balance would require a contact line force yLc that was no longer normal to the 

t The account given here is described much more fully in the revicw of Dussan V. (19iS),  
which gives a most useful list of references. 

YBC, namely 
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FIGURE 5 .  Moving contact line (solid going with speed U from left to right with respect to L). 

surface of C if O * ( O )  =i= 8*( U ) .  The additional components along the surface (assuming 
Young’s equation to  hold) could be regarded as a velocity-dependent frictional force 

YLF = YAB cos {@(u) - OF(O)} 

associated locally with the contact line. For highly viscous Newtonian fluids, the 
situation is much more complicated because the viscous stresses necessarily created 
by the velocity fields Y, and v B  would lead to deformation of the interface AB. 
Furthermore any velocity and stress fields satisfying the continuity equation and a 
no-slip boundary condition a t  the interfaces AB, AC and BC lead to singular stresses 
a t  the contact line (Dussan V. 1979, pp. 390-393), which destroy any simple 
interpretation of the local contact angle. Thus in figure 5, the interface AB would 
have infinite curvature a t  L, and could not be treated as straight near L. 

Two remarks, which go beyond those made in Dussan V. (1979), should be made at 
this point. The first is that  the only absolute theory of liquid viscosity, that of Eyring 
mentioned earlier, does not display this singularity because the shear stress only rises 
logarithmically with shear rate; the second is that  a wall-slip coefficient based on the 
Eyring rate theory with comparable activation energies would allow of significant slip 
in the inhomogeneous region near L, and hence eliminate velocity discontinuities, even 
though the no-slip boundary condition would be accurately applicable far from L. It 
is thus perfectly reasonable to suppose that the continuum hypothesis could be 
retained even when providing a mechanical model for the moving contact line, 
provided a non-Newtonian viscosity and a small slip coefficient were used. 

It will be readily recognized that the contact-line problem discussed above is 
idealized. When molecular dimensions are involved, real surfaces are not plane, nor 
are they clean, nor are they always uniform. It is by no means certain that contact 
line movements are steady. When non-equilibrium effects arise over such short length 
scales, the applicability of linearized irreversible thermodynamics (as expressed in 
terms of transport coefficients added to  equilibrium state equations) is in doubt. 
However, the added complications introduced by these real effects should not distract 
attention from the logical and conceptual requirements of a continuum theory. If 
such a theory exhibits inconsistencies, these should be eliminated by the introduction 
of the least number of additional features (Occam’s razor). A suitable marriage of 
physical and fluid-dynamical points of view has not yet been arranged, let alone 
solemnized. 
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Flow $el& for complex fluids : a challenge to analysts 

Much of the impetus for studying the rheology of polymeric and other complex fluids 
came from observed departures from Newtonian flow, such departures often being 
spectacular and puzzling (see, for example, Bird, Armstrong & Hassager 1977, 
chapter 3, or Lodge 1964, chapter 10); these include a strong tendency for elastic 
fluids to climb up a rod rotating in a bath of fluid, to swell by an order of magnitude 
when extruded into air through a narrow tube, to be capable of passing continuously 
from an open reservoir to a syphon tube with its upper end held above the free 
surface, to recoil when an extending filament is cut, and to display large regular or 
irregular oscillations in flow when extruded from a reservoir through a narrow tube. 
In all cases, these effects grow with increase in flow rate. If the fluid can be described 
by a characteristic time h and the flow field by a characteristic time T (whose inverse 
might be the deformation rate D or the relative rate of change of deformation rate 
B/D) then a dimensionless measure of the importance of elastic effects is given by 
the Deborah number 

De = h/r. 

The effects mentioned usually arise when De becomes appreciable, and are most 
spectacular when De is large compared with unity. 

Fluid mechanics is remarkable for the detailed analytical and numerical solutions 
obtained for laminar flow of Newtonian fluids in a wide range of geometries. The same 
cannot be said to hold for rheologically complex flows, except when departures from 
Newtonian behaviour are relatively small, and a perturbation about the Newtonian 
solution can be carried out. Examples of such solutions have been provided by Rivlin 
and co-workers (see, for example, Rivlin 1979) and by Joseph and co-workers (see 
Joseph & Beavers 1977, for a survey). The advantage of low-Deborah-number 
expansions is that the rheological equation of state can be universally expressed as a 
Coleman-Nollretarded-motion expansion, material properties being expressed through 
definite values of a set of scalar constants. High-Deborah-number flows have not 
been successfully treated analytically, except for the rather simple cases of fibre 
extension (see Petrie 1979, chapters 5 and 6, for a comprehensive account), radially 
symmetric (sink) flow, and one isolated solution for wedge flow (Hull 1981). 

Many workers have taken the view that numerical methods offer the best means of 
predicting flow fields for elastic fluids (see Walters 1979, pp. 118-120). Early work has 
tended to concentrate on plane or axisymmetric flow into contractions and around 
spheres or cylinders; indeed, it has recently been proposed that certain test geometries 
be agreed upon for comparative purposes. Equally, relatively simple rheological 
equations of state have been used, mostly of the differential or rate type; for example, 
the Oldroyd &constant model 

1 , 
where TE is the extra stress tensor and 

9 a  3 = , + ( v . V ) + ( W .  - .  
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with 

w = *{Vv- (VV)T}, D = *{(Vv+ (VV)T}, 

is the corotational time derivative, has been widely used, with various values of the 
constants A,, A,, ,uo, ,ul, ,u2, v,, v 2  and T~ (the terms vl and v 2  effectively disappear 
when an additional arbitrary isotropic pressure -PI is added to yield the total stress 
tensor T). Some particular cases of this model can equally well be expressed in integral 
form, e.g. the Oldroyd model B 

where (I - yrol) is the Finger strain tensor. Experience so far has shown that iterative 
solutions do not converge satisfactorily for large values of the Deborah number. On 
physical grounds it can be argued that integral models should suffer less from numerical 
instabilities than differential models, but no conclusive evidence has yet been pub- 
lished on the underlying connections between Deborah number and numerical 
instability. 

The challenge to workers in the field is twofold: first to select a single rheological 
equation of state that will adequately represent the behaviour of some important 
polymeric fluids over a wide range of unsteady deformation rates; secondly, to solve 
the resulting conservation equations for non-trivial flow geometries. It is to be ex- 
pected that approximation schemes based on simple kinematical, dynamical and rheo- 
logical models will be necessary to solve the relevant highly nonlinear sets of equations. 

Flows involving large temperature (and/or pressure) gradients in fluids of low 
thermal conductivity and high viscosity also present unusual features when the rheo- 
logical equation of state is highIy temperature (and/or pressure) dependent. An 
interesting way of representing such rheological behaviour in polymers by rate- 
equations has recently been provided by Acierno et al. (1980). Many practical situa- 
tions in polymer processing also involve phase changes (solid/liquid crystal/liquid) 
which may themselves be rate controlling; in the latter case, care has to be exercised in 
defining the relevant jump conditions at  interfaces. 

Other flows, of very considerable importance in chemical engineering, involve mass 
transfer by bulk diffusion and across interfaces. If the diffusing material is surface 
active, th,m variations in its concentration can strongly affect interfacial variables 
like surface tension. The mass transfer equations are then strongly and nonlinearly 
coupled to the flow equations. A currently important example of such a situation is 
provided by the two-phase flows in porous media characteristic of tertiary oil recovery. 

Some readers may ask at  this point whether there is any benefit to be gained by 
those steeped in traditional fluid mechanics tackling these physicalIy more complex 
problems. I think that there is. Old-fashioned fluid mechanics is based on rigorous 
mathematics, on precise definitions, on careful analysis of error, on elegance in formu- 
lation, on a search for self-consistency and on comprehensiveness in approach within 
a chosen field. These characteristics are less evident in the wider field I have described; 
independent schools of thought flourish apparently tackling the same problems, but 
using disjoint empirical bases often incorrectly described as theories. Continuum 
mechanics is no longer a significant part of the education of physicists or chemists, and 
so their approach is often highly specific to their chosen materials or phenomena. 
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Successful practitioners of fluid mechanics are well schooled in the solution of non- 
linear problems, and have far more background in stability theory (or bifurcation 
theory) than all but a small proportion of engineers. Yet it is precisely the effects of 
instability, multiple solutions and hysteresis that are so important in natural and 
industrial processes. Those who have applied a strong fluid-mechanical background to 
complex problems have, in many cases, been outstandingly successful as evidenced by 
occasional fascinating papers in this Journal. The spirit of Maxwell, Stokes, Rayleigh 
and Taylor, to name but those most revered in this Journal’s home base, will surely 
light upon equally distinguished successors. 
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